
1

Altimeter observations of baroclinic  oceanic inertia-gravity wave turbulence
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Abstract

For a wide range of nonlinear wave processes - from capillaly  to planetary waves -

them-y predicts the existence of Kolmogorov-type spectral cascades of energy and other

conserved quantities occurring via nonlinear resonant wave-wave interactions. So far,

observations of wave turbulence (MT) have been limited to small-scale processes such as

surface gravity and capillary-gravity waves. Presently, sea surface height measurements

by the ‘1’opex/Poseidon  altimeter allow one to detect WI’ with spatial scales from about 50

km and to a thousand kilometers - occurring in baroclinic  inertia-gravity (1(i) waves. ‘l>hc

average amplitude of sea surface height oscillations is about 5 cm, which means that the

internal wave amp]itude is roughly 50 m. In many regions this amplitude is much greater.

Similar to the case of acoustic waves generated by 311 turbulence, IG waves attain their

highest intensity in regions of a large horizontal velocity shear near major ocean cuments -

where the level of 2D vertical turbulence is high. The degree of the IG wave nonlinearity

in such regions is well above the weak-turbulence limit (of 4-wave resonant interactions):

in the Gulf Stream and Aghulas Current regions, the wave spectra attain the saturation

Ie,gilllc  sillli]ar  to the Phil]ips spcctrunl  of surface, gravity waves on deep water. Scattering

of barotropic tide by ocean floor topography provides another mechanism c)f ~aroclinic  ICi

W’]’ which has important implications for global dissipation of ticlal  energy.

Submittecl to Phi]. “1’rans. Ser. A, Roy. Sot. 1,cmdon. Novelnbcr  1996
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1. Introduction

By wave turbulence (YVT for brevity) we understand local nonlinear resonant wave-

,’ wave interactions resulting in continuous spectral fluxes of energy and, possibly, other

conserved quantities from the range of scales where the wave motion is generated by

external forcing to either smaller or larger scales (e.g., Zakharov, 1984; Zakharov et al.,

1992). The corresponding power spectra of fluid velocity or sea surface height (SSH)

oscillations tend to be rather broad and, within selected sub-ranges of wavenw-nbers  and

frequencies, exhibit power-law behavior. In these “scale-invariant” regimes, the SS11

geometry is characterized by a quasi-fractal  pattern (Glazman,  1993).

A standard example of WI’ is the field of wind-generated surface gravity waves on

deep-water: the wind energy  supplied within a narrow spectral range (the “generation

range”) is cascacled  down the spectrum due to nonlinear interactions within resonant wave

tetrads (}]asselmann,  1962). Provided the wind fetch and duration are sufficiently long,

an inverse cascade of wave action develops at wavenumbcrs below the generation range

(Z,akharov  and Zaslavskii,  1982). Some of the energy is eventually dissipated in the high-

wavenumber range due to small-scale wave breaking and viscosity and some energy is

advectec?  in the wave propagation c]irection duc to the wave groLlp ve]ocity.

Many dynamical features of deelJ-water surface. gravity ancl capillary waves are expectecl

to be found also in baroclinic  ICi waves because t}ley  attain a substantial degree of

nonlinearity. Such features inclucle:  1 ) [he inverse cascade of wave action causing large-

scalc  oscillations (“CO1ldeIISatC.’l)  at near-inertia] frequencies (Falkovich  and Medvcclev,

1992), 2) the presence of several clistinct  power-law sub-ranges in wavq spc.~tra

(Gla~man,  1996), 3) intermittent events of short-length wave breaking producing small-

scale turbulence, etc. The first feature is of special interest: the high kinetic energy at the

inertial frequency has been observecl  by many authors - see (Webster, 1968) for a historic

review. IIowcvcr, traditional explanations of this spectral peak based on linear theories

(e,g., Pol]arcl,  1970; Ilesaubics,  19”/3; Munk, 1980) have serious deficiencies. ‘1’he 1(;
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WT theory predicts the inertial peak as a result of the inverse spectral cascade of wave

action from the shorter-scale range where the energy, action and momentum are supplied

by external forcing -- similar to the case of wind-generated surface gravity waves on deep

water (Falkovich,  1992; Falkovich  and Medvedev, 1992; Glazman, 1996).

In contrast to the usual edcly  turbulence, W~ was never regarded as a key physical

process for ocean dynamics. IIowever, this perception may have to be revised. As

discussed in Sect. 7, W~ appears to be a universal anti well pronounced phenomenon with

strong links to other components of ocean dynamics.

In the framework of shallow-water equations in the beta-plane approximation, large-

scale fluid motion can be divided into two basic types: the “slow” motions - which are

essentially of vertical nature - and the “fast” motions of the gravity-wave type. };or

numerical rnoclcling  of ocean circulation, the latter represent “computational noise, ” hence

they arc filtered out by using the quasi-gcos[mphic  approximation (the C31arney-Obukhov-

IIasegawa-Min~a  equation) or by imposing the rigid-licl  condition at the surface (for the

barotropic  component). The intrinsic frequency of the fast oscillations is limited from

below by the local ine~lial  frequency f = 2,f)sin0, where L? is the Earth rotation frequency

and O is the geographic latitude, whereas the characteristic timescales  of Rossby waves and

other C]uasi-gcostrophic motions are measured in weeks and months, not hours. A

statistical approach permitting separation of motions with different time scales is described

in Sects. 4 ancl 5.

Although the statistical characteristics of the slow motions represent only an intcrmccliate

result of our work, they arc of great  intrinsic interest. ‘J’herefore,  in Sec~s.5  tiIIcl 7 wc

analyze these motions ancl quantify intensity of the quasi-gcostrophic  component in the

Atlantic. We also demonstrate that the Rossby wave field is characterized by a broacl

angular and wavenurnbcr  spectra; hcrrcc,  the traditional determination of the wave phase

velocity basecl  on longitude-time plots of a lc)w-pass filtered SS11 field is fundamentally

flawed and it yields a greatly overestimated phase velocity. “l’he  material in Sects. 5 and 7
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facilitates our conclusion that the main source of baroclinic  IG wave energy is the instability

of vertical motions with respect to gravity mode perturbations.

13aroclinic  IG W1’ has never been expected to affect satellite altimeter measurements.

By design, the primaly mission of satellite altimetry is to measure SSH variations

associated with large-scale ocean dynamics. Hence, any substantial contribution of IG

W]’ (except for purely periodic, tidal wave component which is routinely removed from the

measured SSH signal) would encumber the primary mission of ocean altimetry ancl call for

a re-interpretation  of some of its results. l’he present work gives a strong ground to such

concerns.

2. Theoretical spectra of IG WI’

‘l’he main goal of our stucly  is the identification of ICi WT in altimeter measurements.

l-his task is greatly facilitated given theoretical knowledge on the lG W-l’ process. in this

Section we provicle a brief review of wave spectra derived in (Glaman, 1996).

Depending on the location of the extenlal  forcing in the Fourier space, nonlinear wave

dynamics may be dominated either by the direct energy cascade or by the inverse cascacle  of

wave action (Falkovich  and Medvedev, 1992). If the frequency of wave excitation is

greater than f but much lower than the llrunt-Viiisilii  frequency, the spectrum will contain

both subranges . I’his case may be realizecl,  for instance, at micl-latitucles  where ba[-oclinic

IG waves receive (at least paI-t  ofl their energy  from a semi-cliurnal  barotropic  title scattcmcl

by ocean floor topography. Using the lG wave dispersion relationship,

d-o = fz + (Icc)z , (1)

a crude cstirnate of the characteristic wavenumbcx scale for the external energy input is

founcl as

k7 = R- 1 J(Q),) })2 -“1 -- / <-‘J /siri2(f))- ] ‘- 
COt(0)/  R—. . . Y

where WI is the tidal frcc]ucncy  ancl R is the Rossby radius of cleformation,

R=clf

(2)

(3)
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IIere, c is the phase velocity of Kelvin waves for the 1st baroclinic  mode. [Jsing (3) in

(2), we find k~ = 2f2cos(0)/c. Therefore, the length of baroclinic  IG waves receiving

energy from tides tends to increase with an increasing latitude. In the framework of the

1.5-layer model, c = @>ll  where g’= (Ap / p)g is the reduced gravity ancl H 1 is the

mean depth of the thermocline. For a continuous stratification, c = ~gh  where h is the

“equivalent depth” for the 1st baroclinic mode. ‘l’his parameter is related to the Brunt-

Viiistilii  frequency, N, by

h = (Ml/ n)2g’1 (4)

in Figs. 1-6, wavenumber k~ is marked by a box at each curve. If baroclinic  IG W’1’ is

assumed to be generated by the semi-diurnal tide, the wave spectmm would be determined

at k > 2!2cos(0)/c by the direct energy cascade ancl at k < 2!i2cos(6)/c  by the inverse

cascade of wave action.

‘1’hc theoretical spectra in this Section pmlain to long internal waves of the first baroclinic

mock,  i.e. thermocline depth oscillations, 11 l-t- h(x)t),  ‘l’he power spectrum of SS11

oscillations ~l(x,t)  is found by multiplying the power spectrum of h(x,t) by

E== (( A@p)I]2/H)2, (5)

where Ap/p is the relative difference in the water density across the thermocline boundary,

112 is the depth of the lower layer (in the 1.5 layer mode], 112fl I-0( 1)) and H is the ocean

depth. l’he characteristic value of E at mid-latituclcs is E = 10-6.

2.1 llircct energy cascade

For the lowest clegre.e  of wave nonlinearity - when wave-wave interactions occur in

resonant tctrads - the 21) spectrum in the clirect-cascac]c  range (otni[t  ing the w lgLIl ar

clcpcnclence) is given by

(x (H]R)2 Q“3
F(k)= - - - -(z- 1)(22’ +7)

3 (Z2 _ lj51”3z516”  ‘ (6)

where z =- 1 -i (k1{)2



7

Its ID version, F1 (k), is illustrated in Fig. 1. ~ = (R/ C3 ) Q is the non-dimensional \

spectral flux of energy, and Q is the dimensional flux of energy (per unit surface area per

unit mass of water) which can be viewed as the rate of energy dissipation in the high-

wavenumber range. Furthermore, ~q is the universal “Kolnlogorov  constant” of

proportionality ’whose value is presently unknown.

As the wave nonlinearity increases, the number of resonantly interacting wave

components grows, and (6) has to be replaced with a more complicated expression

accounting for 5-wave and higher-order resonant interactions. Denoting the effective

number of the resonantly interacting wave harmonics by v, the spectrum becomes:

o! (V)(H1R)2Q]’(’’-1) (z- 1)(Z2 -t4v--9)F(k) == --q ----- ~v-:-l)-----  ----3---- -5-v_:3)71v_1T-3,7  (v:.1)
(z- --1)(C  - ~ -

(7)

q’hc dependence of aq on v is presently unknow. l’he multiwave interaction regime (i.e.,

v > 4) is expected to be observed in ocean regions where the lG wave intensity is

sufficiently high. As will be shown in Sect.7,  these are the regions of a large lateral shear

in the current velocity field.  Because the relative degree of the IG wave nonlinearity (with

respect to wave dispersion) is highest in the high-wavenumber  range of the spectrum

(where the 1(3 waves tend to become nondispcxsive), the multiwave interaction regime

would occur first of all in the spectrum tail. An example of this regime (with v as high as

10), is illustrated in Fig. 2.

It is interesting that spectra (6) and (7) display similar trends at k >0.1 racl/kin: t}]ey

approximately follow the k-l power law ancl cio not clepcnd  on the Rossby  radius of

dcformat ion. ‘l’his power law is confil-mcd  by satellite altimeter observatiol~s (e.g., I e

l’raon et al., 1994). Ilowcver,  as discussed in Sects. 3 ancl 4, the high-w~~ve[]~lx~lbe.r  range

of the altimeter-observed spectra is strongly affectccl  by various intervening factors

(“noises”) which may also yiclcl the k-l behavior.

Of special interest is the case of extremely strong wave turbulence - i.e., v -> cm. Ily

analogy with the Phillips spectrum of surface gravity waves on clcep  water, the
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corresponding limit of (7) is called the “saturated” spectrum (Larra~,a et al., 1990). At

sufficiently high k (such that (kR)2 >> 1), equation (7) yields F(k) = 40+ (H 1 R)2 (kR)-G.

The corresponding 1 D spectrum is Fl(k) - k-j. AS shown in Sect. 7, this regime is

attained in the Gulf Stream and Aghulas  Chrrcmt regions where high-amplitude ICJ waves

are generated by an intense mesoscale-eddy  activity.

Because of the presently poor understanding of external forcing, we cannot offer a

specific formula for the energy input, although for a special case of tidal forcing such

relationships have been proposed (e. g., Cox and Sandstrorn, 1962; Munk, 1966; Baines,

1982).

Spectrum (6) is illustrated in Fig. 1 for several values of the Rossby  radius of

deformation (45, 27 and 20 km) calculated for latitudes 20, 35 and 50 degree, respectively.

[Actually,  we plot the 111 spectrum, F] (k)=& kI;(k), which can be comparecl  to the 1 I )

spectra of along-track altimeter rneasurernents. ] We selected the value. of cxqQ]’3  in (6)

that yields the correct order of magnitude for c.kI;(k) - as compared to the typical spcc[ra  in

~’3= 46 10-s m~lssec-l. Assuming,l;ig. ]~ - we used cxqQ . for instance, that the entire

energy flLlx is due to the barotropic tide scattereci  by ocean floor roughness and using

Munk’s  (1966) estimate Q - 10-10 m2scc-s,  we fincl the Kolmogorov constant ~ - 0(10).

This value is greater (by an orcler of magnitude) than typical Kolmogorov constants in

models of turbulence (including wave turbulence). Assuming smaller values of c~l (such as

~1 - 0(1)) leacls  to greater values of Q. lhcrefore,  barotropic  title. provides otlly a fraction

of the ~G W1’ energy, and most of the energy must come from Other sources.

Iiinally,  F’ig. 1 shows that, given a constant energy input Q, the wave sp~;trunl in the

“rnesoscalc” range is independent of the Rossby radius of cleformation (hence, of the

latitucle).  [By the “mcsoscale”  we tentatively call the range of wavelengths 50 to 300 km].

As follows from I;ig. 1, the large-scale range of the spectrum obeys power law k-o~, and

in the mesoscale  range this spectrum rolls off approximately as k-1 “2. in most ocean

regions (e.g., 1.e. ‘1’raon et al., 1990; 1992; 1994), SS11 spectra in tile mesoscale ran~e roll-
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off much faster than k-1.2. Such observations agree with (7) for large v (highly nonlinear $. .

waves), Fig.2.  However, as shown in Sects. 6 and 7, large values of v are rather rare in

..” the real ocean. Finally, at wavelengths shorter than about 70 km, spectra (6) and (7) are

fairly flat - approaching the k-1 regime - in agreement with the observations. An alternative

explanation ofthc k-1 tail is suggested in Sect. 3.

2.2 Inverse cascade of wave action

The relatively fast spectral roll-off observed in the mesoscale range (e.g., Le Traon et

al., 1990; 1992), F1 (k) - k-3, is best explained by accounting for the wave action spectral

flux caused by weakly-nonlinear wave-wave interactions (Glazman, 1996). In the inverse

cascade range, the 211 spectmm is

};(L) = E2L~!;!?:-?::_._-.___(!  _- ! )
~2/3(z2 _  p ‘ (8)

where 1) = P / C2 is the non-dimensional flux of wave action and Ur) is the Kolmogorov

constant of proportionality for the action flux. “l’his spectrum (multiplied by E.k to m,ake it

colnpatible  with the measured 111 spectra) is illustrated in Fig. 3. The values of R and c for

this plot are the same as those for Iiigs. 1 and 2, and o+P lj~ is set to 0.21 m21~sec-zis - to

obtain an orcler-of-magnitude  agreement with the observed spectra, Fig. 12. Assuming the

Kolmogorov  constant CXP to be of the same order of magnitude as Uq of (6), we obtain a

crude estimate for the wave action flLlx: P = 10-S n12/sec2.  I’he k- 10’3 rate of the spectral

1011-Off  shown in ~:ig.~ is in good agreement with altimeter measurements.

liigures  1 and 3 demonstrate that, while being similar at low wavenumb~[s,  spectra (8)-:j?i; > -.,,.
ancl (C)) exhibit significant differences in the me.soscale  range. Except f& its tail, spectrum

(8) yiclcls the best overall agreement with field observations such as Fig. 12. Ilowever,

the high-wavenumbcr  range of altimeter-observed spectra is clominatecl  by various noises

cliscussecl in Sect. 3. I1ence, it should be excluded from the comparison.
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2.3 Normalization of SSH spectra

Because of the uncertainty in the actual values of spectral fluxes Q and P and

Kohnogorov  constants, comparison of theoretical spectra with field observations requires.

additional effort. To remove the uncertainty we shall normalize spectra as Fj(k)/F(kO),

where ko -R-1: Figures 4 and 5 illustrate non-dimensional 1 D spectra
kF(k)

“ ( k )  =  fi-i  R)F(l  / R )

for the direct and inverse cascades, respect vely. A most important externa parameter

influencing the shape of the normalized spectra is the local baroclinic Rossby radius of

deformation. As a result, spectra (9) exhibit a rather strong, monotonous dependence on

the geographic latitude and no dependence on the spectral flLIxes.  This property will be

exploited in our analysis of altimeter data.

2.4 Limitations of present theovy

By permitting an unambiguous specification of the wavcnumber scale separating the

two inertial subranges,  the case of tidal forcing is unique. Ilowcvcr, the tidal forcing is

not the only possible, and probably not even main, mechanism of baroclinic  IG wave

generation. Consequently, the relative extent of the inertial subranges  and their separation

scale are generally unknown. Moreover, the energy and action fluxes, Q and P, are not

necessarily conservative. If, for instance, baroclinic  lCi waves are radiated by edc]ies or

currents (via the instability of vertical motions with respect to gravity-mock perturbations),

the, external forcing would occur in a wic]c spectral band, resulting in a divergence of

spectral fluxes in the wavenumbcr space,

Spectra (6) - (8) arc based on a rather general, albeit heuristic, thcoly  of wave

turbulence in scale-dependent systems (C~laii,n~an,  1995, 1996). Its central assumption is

the locality of resonant wave-wave interactions ill the I;ourier  space. ‘l’he theory ignores

possible interactions among various baroclinic  Inodes, and it does not account for non-local

energy transfer in the high-w avenumbcr  range of the spcctr-um. 1 ndcccl, in the short-wave

limit the dispersion relationship (1) reduces to the. acoustic-type law @=: kc. In this
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regime, the wave nonlinearity leads to the formation of “shocks” resulting in internal wave

breaking and generation of small-scale turbulence, hence in an essentially nonlocal energy

transfer to smaller scales. The weakly-nonlinear version of the IG WT theory is not.’

appropriate for this range.

In view of its many simplifications, the present theory is not expected to be in perfect

quantitative agreement with field observations. We do, however, expect it to correctly

describe basic trends such as the rate of spectral roll-off and the dependence of the

spectrum on external factors - especially on the geographic latitude entering R.

3.

at

]{ffcct of “noise” cm altimeter-based spectra of SS11 variations

As was noticed by many investigators, the characteristic behavior of the SS11 spectrum

k 20.1  racl/knl is given by Fl(k)  - k-l (Gaspar ancl Wunsch 1989; I..e ‘1’raon et al. 1990,

1992, 1994). As we mentioned earlier, the direct energy cascade may well be responsible

for this regime. h this Section we show that error noises of altimeter measurements, such

as spatial variations of the electromagnetic bias, radar propagation in the troposphere

influenced by water vapor fluctuations, the instrument measuring noise, etc., offer an

alternative (and rather convincing) explanation of the k-l regime. This power law is

known as the “shot noise” spectrum: b(k) = Ilk-1.

1.et ~2110iSe  be the component of the total SS11 variance due to the noise. Since the

total r.m.s. error of SS11 measurements is pl-esently  believecl  to be about 5 cm (17L] et al.,

1994), wc shall use ~znoise  = 10 cm2 as a crude estimate of the noise level, ancl employ the

shot noise model for scales 10 to 100 km. The snort-scale boundary of this :angc is near

the Nyquist frcquellcy  of the ‘1’opex/Poseidon  altimeter measurements, and the large-scale

boundary corresponds to the scale of wincl fetch variations in the open ocean which control

the cm. bias fluctuations. ‘lhus, the noise-relatccl COIIll>OnCIlt of the ) D spectl-um  is

Inoclc!lec] as
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( l o )b(k) =
{

flk-~ forkl >k>k2

o otherwise

.; The amplitude factor B is estimated by integrating (10) over k, which yields
2 Addin~  b(k) to the lD version of the noise-free spectraB = ~2rrojSe I ln(k2 I kl) = 4cm . 0

(6) - (8) completes our simpje model of JG WT in the presence of the small-scale noise.

Of particular interest is the case when the spectrum is dominated by the inverse cascade.

This is illustrated in Fig. 6, Also shown are three power laws approximating the spectrum

in different sub-ranges. Comparison of this, noise-affected, spectrum with the noise-free

spectrum in Fig.2 indicates that at wavenumbers above 0.01 rad/km, the inverse cascade

spectrum is easy to confuse wit% spectmm (7). One important difference is the degree to

which the Rossby radius influences these spect~a:  variations of R have a grea&er  effect on

the inverse cascade spectrum than on the direct cascade spectrum. In Section 6 we

clcmonstrate that the inverse cascade spectrum with noise, Fig. 6, describes the observed

R-dcpenclcnce  more faithfully than do spectra (6) and (7).

In surnrnaty, the characteristic features of IG W’I’ to be detected in SS11 spectra at ntid-

latitudes include: a very slow spectral fall-off (at the rate near k-04) at wavenumbers  below

-0.01 rad/km;  an accelerated spectral fall-off (at the rate near k-~) in the range -0.02.-0.08

rad/knl;  a relatively slow spectral fall-off (at the, rate near k-1) at wavenurnbers  above -0.1

racl/knl. This “three-segment” shape was pointecl out by 1.eTraon et al. (1994) as typical

of altimeter-reportecl spectra at mid latitudes, As one of most prominent features of lG Wr

spectra we also indicate their strong cle.pendence on the baroclinic  Rossby raclius of

cleformation - expressed

increasing polewarcl.

4.  Separation of

as the “blue” shift of the entire shape with the geographic latitucle

motions with c]iffcm.nt time scales

<icnerally,  observation of ICT waves is a fonllichlb]c  task, for it Cails for accurate,

simultaneous, high-spatial-density, measure.mcnts over large  ocean areas - many hundreds
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kilometers in extent. The amplitude of SS11 oscillations due to long internal waves is only
. ,

about 10-3 times that of the thermoc]ine depth oscillations, hence is under 10 cm, whereas

the accuracy of SSH measurements by the T/P altimeter is about 5 cm in terms of the r.m.s.

error. An intense background of diverse dynamical processes further complicates the

problem. In order to extract information on baroclinic  IG waves, one has to start with

filtering out all Rossby wave modes and other types of geostrophic  and quasi-geostrophic

(“slow”) motions. As discussed in this Section, this can be achievecl  by combining ID

spectra of SSH variations along altimeter groundtracks  with 2D spectra of SSH variations

between tracks. The procedure exploits the large intrinsic difference in the temporal

autocorrelation  radii of quasi-geostrophic  versus gravity-mode oscillations.

‘l’he spatio-ternporal  autocorrelation  function of altimeter-observed SS11 field, on the

assumption that SSH variations caused by slow and fast motions are uncorrelated,  can be

presented as a sum of two components

W(?-, T) = w~jow(r,’r) + W’jiast(v) (11)

For T > T“, where ~“ is the characteristic autocorrelation  timescale of the fast processes,

W(r, T) = W~lO}V(r,  T). This allows one to separate motions with different tirnescales.

Furthermore, baroclinic  IG waves are not the only contributor to Wfay~ (r, z). Being

interested in WIG (r, ‘c), we shall treat other fast components as “noise” and assume them to

be uncorrelated  with IG wave oscillations: Wfust (~,’t) “ W~~(r,’C)  + W/~~i~~(r,T)  .

I;or a few exceptions discussed in Sects. 6 and 7, W~oi,e (r,~)  should bC appreciable, only

at sufficiently short temporal ancl spatial lags, In particular, the contribution to lVnOi~C ( r, ~)

of barotropic  gravity waves is negligible for time lags ~ exceeding the tempor~l

autocorrclation  radius of this wave process (while r may be as small as wc please). ‘l’his

timescale  is practically a few wave-periods long, hence is about an hour. Similarly, when

the spatial lag exceeds the autocorrelation  length of altimeter measuring errors, contribution

of measuring error noises becomes negligible compared to WIG ( r, ‘c) at any t imc 1a?,.

These properties arc exploited in our clata  analysis proccclure.
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4.1 SSH spatial variations along and between altimeter groundtracks

SSH is sampled by the T/P altimeter every 6.4 km along a groundtrack,  and a 1000 km

segment of a groundtrack  is covered in less than 3 minutes. Due to this, virtually instant.,

sampling feature, IG W~ (representing the fast component of SSH variability) is detectable

in the ID spectra and autocorrelation  functions estimated based on individual satellite

passes. However, these functions also contain information on slow motions.

The situation with 2D autocorrelation  functions and spectra is different. To estimate

these functions, one must simultaneously use SS11 measurements from several (ascending

as well as descending) passes within the ocean area of interest (such as, for example, a 10

by 10 degree square area) - as suggested in (Glazman  et al., 1996a; thereafter abbreviated

as GI;G’96). l’hc ascending (or descending) l’fl’ altimeter groundtracks  are about 300 km

apall, and the orbit-repeat cycle is about 10 days. Time differences between SS}1

measurements sampled on different satellite passes within a single orbit-repeat cycle range

from several hours to 10 days. ‘1’herefore,  we can select pairs of SS11 measuremctlts with

time differences greater than the temporal autocor~elation  radius ~’ of 1(; wave oscillations.

It is easy to show that ~“ = (2n/o)o)n where 0)0> f and 2 z n K 10, hence ‘c* is small by

comparison to the timescale  of quasi-geostrophic  motions. The 211 autocorrelation

functions (and the resulting spectra) based on such measurements are affected only by the

slow motions. Combined with the. 1 D “along-track” spectra, these 2D spectra allow one to

extract information on the fast SS11 component.

T’hc joint analysis of along-track and between-track spectra is possible only if the

resolution of the. 21> analysis is comp,arab]e  to that of the 11) analysis. “l’his i“ w] extremely

difficult requirement. The 21> spectral analysis tcchniquc dcvelopccl  in GFG’96 allows

one to resolve spatial scales as short as 70 km.

4.2 IIetection  of imroclinic IG WJ’ in satellite altimeter rneasurernents

The data analysis proccciure  includes the following steps:

Step 1. Estimate the 1 D (“along-track”) spatial autocorrclation  function,
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W(r) = cl~(s+r)l~(s)>, (12) ,
., >. .

using altimeter measurements on individual satellite passes within a given ocean area.

Because both Ii(s) and ~(s+r) belong to the same satellite pass, their time difference is

ignored. By the spatial lag r we understand here the distance between two points on a

groundtrack,  aid s is the distance alongtrack  from some point of reference. The products

are binned by values of r. Although the data from ascending and descending passes are

used separately, function W(r) is eventually obtained by averaging products q(s+r)?l(s)

from all passes within the area under consideration. Because ascending and descending

passes have different orientation, the averaging suppresses effects of the SSH fields’

an isotropy. The averaged products represent an estimate of the 1 D autocorrelation

function for a linear section of an equivalent isotropic spatially-homogeneous random field.

I’he corresponding 1 L) spectra were estimated as F171’  of W(r) as well as direc[ly from

the SS11 data in the usual manner (e.g., 1.eTraon et al., 1990). Roth approaches yielded

virtually t}lc same results. I’he directly obtainecl spectra were then improved in the high-

wavcnurnber  mnge by correcting for the effect of discrete sampling (every 6.4 km) of the

SS11 field on individual satellite passes. To this purpose, we divided the spectrum estimate

by (sin(kL)/lcL)2  where 1, = 6 km.

Step 2. Estimate the 21.) spatial autocorrelation  function, W~lOW(r), based on SS11

measurements taken at least ttio  (but no more than 10) days apart. lJsing data frotn

different pairs of satellite passes, wc calculate the mean of all products ~l(x+r,t+ At)?~(x,t)

for pre-set bins on the r-plane. Actual time differences At between SS11 measurements

clcpend on the satellite orbit configuration and on our choice of satellite pass&I Since

II(x-t r,t-t At) and T(x,t) belong to different passes, time lags At are typically much greater

than the period of 1(3 waves. Consecluent]y,  At 2 z“ and the influence of ICi waves on

W~low(r)  is negligible. Limiting At by five (or even 10) days, we uhirnately  ignore time

differences At and average all SS11 products as if ~l(x+-r,t+At)  and ~l(x,t) were measured

simultaneously. Apparently, the resulting w~lo~v(r)  is suitable for analysis of quasi-
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gcostrophic motions because their characteristic timescale  is always much larger than our

At.

Step 3. Reduce W~loW(r) to the 1 D form compatible with W(r), by averaging W~loW(r)

over the azimuthal angle:

~,low(~)  = (1 / z~) ;Wdow(r>e)de (13)
. . x

It is easy to show that, for a statistically isotropic SSH field, the resulting lD function has

the same meaning as the autocorre]ation,  W(r), of SSH oscillations along a straight line.

However, a realistic SSH field is not statistically isotropic. Hence, the compatibility of

(12) and (13) may not be as high as desired. Finally, the difference between (12) and(13)

represents the spatial autocorrelation  function of the fast motions:

Wfas[(r)  = W(r) - WSIOW(r) (14)

Except for Step 3, details of our approach (inc]u(iing error analysis) are given in GFG’96.

‘l”hc wavenumber  spectra F(k) and lJ~iOW(k)  corresponc]ing to W(r) and W~lOW,(r)  are

obtained as FFT of the autocorrelation  functions. In cloing  so, we use the IIanning

window to alleviate adverse effect of the finite range,  of r. Finally, the inverse l~ourier

transform of the spectrum of the difference, Ffasl(k) = F(k) - F~lOW(k),  was compared to

Wfasl(r)  of (14) to ensure the correctness of the numerical scheme. Examples of functions

W(r), WSIOW(r),  WfaSt(r) and their Fourier transforlns  are illustrated in I:igs. 9 and 10.

4.5’ Reduclion of spatial noise

Sn)all-scale  surface roughness fluctuations cause 1-apicl oscillations of the measured

SS11 because they result in short-scale variations of the altimeter sea state bias (e.g.,

Branger et al., 1993). l’his ancl other factors of spatial noise are responsible for a sharp

peak in the autocorrelation  function W(r) in the vicinity of r=O. IIowcver,  this noise-

rclatecl  peak can be Iemoved by extrapolating the behavior of W(r) from larger scales -

dominated by the “signal of interest” - into the small-scale range dominated by noise..

doing so, one must respect a fundamental property of the autocorrc]ation  function of a

spatially-homogeneous random field - the requirement that W(r) behave as

In
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W+-,(-J =WO-Cr2  , (15) ,,

where WO and C are constants. Thus, the autocorrelation  function at short scales is

replaced by parabola (15) whose coefficients are determined empirically using values of

W(r) at sufficiently larger.

To determine WO and C for the along-track autocorrelation  function, we used W(r)

from the range 20< r <40 km. The same task for the autocorrelation  function of slow

motions, W~lOW(r),  requires r in the range 60 to 100 km because the spatial sampling of

“between-track” SSH values is much coarser than that of the along-track sampling. In

either case, constants WO and C are determined by a least-square fit.

5-. Analysis of baroclinic  wave motions

In this Section wc present a few sample calculations to illustrate the approach. The

focus is on the physical

involved.

5.1 Rossby waves

meaning and cor[ect intcrljretation of the statistical quantities

Although our main task requires only the spatial autocorrelation  WSIOW(r), we undertook

a small additional effol~  and estimated a more general, spatio-temporal  autocorre]ation

function W~lOW(r,~), using the technique described in GFG’96. Apparently, W,lOW(r)  =

Wslow(r,O).  Function WS]Ow(r,z)  facilitates our present analysis of Rossby waves and

affords and insight into the physical causes of SS11 variations reflected in Wslow(r).

A few examples of WSIOW(r) and Wslow(r,z)  are given in GliG’96 along with analysis

of statistical errors in our estimates. Presently, we illustrate three scctims of ‘Wqow(r,z)

for a 10 by 10 clegrcc  surface patch centered at 300S and So]; (over the. Walvis Ridge),

I;ig. 7, and for another patch at 30°S and 25°W, I(ig. 8. l’hc following review facilitates

correct interpretation and utili~ation  of these plots.

“1’he 3D autocormlation  function of a wave field is related to its 21 J wavenumbm

spectrum, F(k), by
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W(r,T)  = j~(k)eik(r-dk)~)~ (=IV(r-cT)), ( 1 6 )

where c(k) is the wave phase velocity. The last equality is valid either for non-dispersive

(i.e., c(k)=const)  or purely monochromatic (i.e., F(k) - b(k-ko))  waves. The right-hand

side of (16) means that the main maximum of the 311 autocorrelation  function appears as a

“jet” (with fuzzy boundaries) passing through the origin, Its orientation in the r-~ space

yields the vector of the wave phase velocity: c = r(z)/ T where r(z) is the position of the

autocorrelation maximum at the T. As (r-c~) increases, W(r-cz) reaches its local minima

and then attains secondary maxima. As shown in Figs. 7 and 8, plane sections of W(r-

CT) resemble a washboard.

By definition, the phase velocity vector is c=o)/k. This is identical to c == ok/  k2

where k k the magnitude of the wavenumbcr  vector. Dividing the numerator ancl

denominator of x- and y-components of c by kX’2 and kY~, respectively, the orthogonal

components can be presented in the form
mlk co colky _CO

Cx =------- ; –=–--COS$, cy~- - - -  .  =:--sin@,
I -E tan ~ k 1 + cot2 @ k

(1-7)

where tan @ = kY / kx. If the meridional component of the velocity vector is small

compared to the zonal  component, i.e., Q -->0, the first equation of (17) reduces to

c,r=colkx. 1,et us show that the meridional (rY=O) section of the autocorrelation  function

yields co/ kx. As follows from (16),

W(rx,  o,z) U: J Fl(k,r)e i(kxr.  - ~n)c]kx ~ w~rx --(W / kx)~) T (18)

where ~1 (kX) = \ ]{’(k~kY is [he 11) spectrum, and the last equality is valid under the S~IIIC

condition as the rightmost pa[t of ( 16). According to (18), the tilt J-x / ~ C)f the lnain riclge

of W(rx, O,’r) (observed in the top panel of I~igs.7  and 8) equals o / kx. - Therefore., under

the condition (kY / kx)2 << 1, function W(rx ,(), T) yields an estimate of the z.onal

component, CX, of the wave speed. If, however, the meridional component of the velocity

vector is appreciable, the difference between m / kx ancl Cx may bccomc quite large. I:or

instance, for waves propagating at &15°  away froxn the zonal direction, “speecl”  rx / ~



estimated based on W(rz, O, ~) is twice the actual CX. The azimuthal angle  ~ for the case
. .

illustrated in Fig. 7 is about 550. l’herefore, the meridional component of the wave vector

exceeds its zonal  component. This has a simple explanation as a result of Rossby wave

poleward refraction caused by a rapid decrease of the Rossby radius of deformation away

from the equator. Many patches in the Allantic  show patterns similar to those in Figs.7  and

8. Therefore, using only the meridional section, ry=o, of the autocorrelation  function -

upper panel of Figs.7 and 8- would result in a substantial, systematic overestimation of the

Rossby wave speed - by a fac[or of 2 or greater.

The same overestimation of the zonal component takes place when one uses a more

conventional technique of Rossby  wave analysis - the longitude-time plots of SS11

variation (e.g., Chelton and Schlax, 1996). Indeecl,  the characteristic tilt x/t of the

elongated features seen in those plots yields 0)/k,~  because those features are treated by

Chclton  and Schlax (1996), as well as by many other authors, as phase isolines  (i.e.,

“wave crests” and “troughs”) of monochromatic long waves propagating strictly westward.

Another common error of this analysis is the interpretation of the distance, 1,x, between

neighboring “wave crests” on the x axis as the wavelength of Rossby waves. l’he. actual

wavelength, k, is related to this clistance  by k = 1,x cos $, hence is only about one half (or

even less) of the reported value.

In general, oceanic Rossby waves arc neither monochromatic nor do they propagate

westward. The broad-band nature of the wave spectrum is especially well pronounced in

the bottom panels of Figs.7  and 8. The short-scale region of W(r), confined by an ellipse

centered at the origin and whose major axis is near horizontal with the half-le~l~th  about

200 km, corresponds to a system of relatively short-scale variations. These inclucle  short

Rossby waves. “1’he larger-scale portions of W(r) - visible in I~i.g. 7 as chains of tilted

elongated “hot” blobs indicate  the presence of long Rossby waves moving, on the average,

in the soutll-west direction. ~’his is conflrmcd by the middle panel - W(O, ry, ~) - of I:ig.7.

‘1’hc W(I-) and W(O, ry, z) of l~ig.  8 C1O not show such a clear nwriclional componcl]t  of the
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long Rossby wave speed. Rather, these pictures display interference patterns caused by
. .

several wave systems propagating in different directions. We thus conclude that the

.; Rossby  wave field contains waves of many different scales propagating in different

directions. ‘I’he strong refraction of Rossby waves caused by the latitudinal  variation of the

Rossby radius of deformation makes it impossible for waves generated at the eastern

boundary of an ocean to cross the entire ocean basin and reach its western boundary.

Therefore, the corresponding concept of the “transit time” (e.g., Chelton and Schlax,

appears to be devoid of geophysical significance.

1 996)

Rossby waves can be viewed approximately as non-dispersive only if kR <c 1. At the

latitude of Figs.7 and 8 (i.e. at 30%), the 1st baroclinic  Rossby radius of deformation is

about 40 km (e.g., Houry  et al., 1987). l’herefore,  the last equality in (16) is relevant

only for wavelengths substantially greater than 1000 km. our  Figs.7 and 8 do not rule

out the existence of such long wave.s, although  they do not show them. What these plots

show very clearly is that the most energetic components of the Rossby  wave spectrum

belong to the wavelength range 200 to 500 km -- too short to interpret c in (16) as the

phase velocity vector. The correct interpretation of the “mean wave propagation velocity”

derived based on the tilt of the ridges in F’igs. 7 and 8 requires numerical analysis of the

integral in (16) - hence, a detailed knowledge of the wavenumber  spectrum F(k) of quasi-

geostrophic  motions. This task is far beyond the scope of the present work.

S.2 lnerlicl-gravity  waves

As explained earlier, estimation of lG WI’ spectra involves the use of 111 autocorrelation

function W~loW(r)  obtained from W~\OW(I-)  by angular integration (1 3). l’o eliminate the

influence of short-scale noises, we replace W~lOW(r)  in the vicinity of the origin by parabola

(15) and interpret WO as the COmpOIlen[  of the total  SS11 variance associated with quasi-

geostrophic  (including Rossby  waves) motions. Iixamp]es  of this “filtered”

autocorrelation  function are shown as clottecl  curves in Pane] A of l;igs. 9 and 10.

.
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l’he 1 D autocorrelation  function, W(r), of SSH oscillations along altimeter ~ .!’, >
groundtracks  is illustrated by the solid curve in Panel A of Figs. 9 and 10. Comparison of

the Fourier transform of these functions, Panel B, with the ID wavenumber  spectra

estimated by Le Traon (1992) based on Geosat ahimeter  observations (and by 1.e Traon et

al. (1994) based on Topex/Poseidon  measurements) shows very good agreement. The

difference between W(r) and W~lOW(r)  is shown by the dashed curve in

and 10.

Panel B of Figs. 9 and 10 presents III wavenumber  spectra related

Panel A of I;igs. 9

to the curves in

Panel A. The SSH variance component due to the fast part of the SSH fieId is estimated as

coefficient Wo in (15) for Wfa~t(r). In Sects. 6 and 7 we show that in most cases the

spectra of the fast motions agree with the IG WT theory predictions. Therefore, we

interpret W01/2 as the characteristic amplitude of baroclinic IC~ waves and denote it by OIG

in the subsequent discussion. Although the snort-scale asymptotic of Wfast(r) is not

presented in Figs. 9 and 10, an estimate of WO (shown by the black circle on the vertical

axis) can be inferred by visual examination of the dashed curves in Panel A: we fincl Wo by

extenciing  the larger-scale behavior of the dashed curves to the small-scale region. “l’he

distribution of OIG for the Atlantic is presented in Fig. 11, and Fig. 12 illustrates spectra of

the fast SSH component. These Figures arc discussed in detail in Sect. 7.

l’he reader may notice that the (low-pass filtered) autocorrelation  functions, Wslow(r),

and spectra of quasi-geostrophic motions for the two ocean regions in Iiigs. 9 and 10 are

rather similar. However, in the case of the fast component (dashed curves) these

characteristics arc quite different: the characteristic amplitude of the fast Ino!: WIS in the

eastern part of the Atlantic is nlLlch greater than that in the central part where it is

comparable to the amplitude of quasi-geostrophic  motions, GR.
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6. The inverse problem of baroclinic  IG WT
.,

III order to justify our interpretation of Ffa~[(k) as the IG W1’ spectra, we must show that

these spectra agree with the predictions of Sect. 2. As discussed earlier, the IG WT

spectrum depends on the local Rossby radius of deformation and other external factors.

Owing to these-dependencies, Ffast(k) must exhibit geographic and seasonal variations.

Focusing our attention on the dependence of the spectrum on the Rossby radius of

deformation, we shall now examine geographic variations of the observed spectra and

compare them with theoretical trends.

Typical values of R for the North and South Atlantic are plotted in Fig. 13 based on the

analysis of water density profiles by Emery et al. (1984) and HoLwy et al. (1887). As

follows from (3) and (4), the range of possible values of R is determined by the Ilrunt-

Viiisiilii  frequency and ocean depth: NH should remain within reasonable limits - such that

the equivalent depth is constrained by 0.5 K h E 1.0 m. The corresponding bounds on R

are shown in Fig. 13.

As a simple way of comparing theoretical and observed spectra, one can treat R in (6)-

(8) as an adjustable parameter and determine its “experimental” value by fitting the

theoretical spectrum to the experimental spectra obtained for each patch of the ocean

surface. In order to eliminate the influence of the unknown energy and action spectral

fluxes, Q and P, anti obviate a difficult question about the specific values of the

proportionality coefficients cx and E, we shall use spectra in the normalized  form (9).

Ultimately, the values of R inferred by this analysis will be compared to the actual

baroclinic  Rossby radius of cleformation known from in siru measurements.

As a measure of the distance between theoretical and expcrimcmtal  spectra we employ:
Kb

-fheor(~)  _. jyf’qk)]~dkA(R, v)= j [11 (19)
K.

where the tilcle  over 1~1 points to the use of normalized spectra. “J’he.  upper limit is set to Kb

= 3/R to recluce  the influence of irrelevant slnall-scale processes (“noises”). Selection of



the lower limit depends on our choice of the spectral model. To employ  the direct cascade

mode] (7), we select Ka= l/R. This choice minimizes the influence of the inverse cascade

range which may be present at k < Ka. If the spectrum is assumed to be dominated by the.

inverse cascade at all wavenumbers  below Kb, the lower limit of integration should include

large scales; hence we choose Ka=0.4/R.  This is the lowest wavenumbcr  for which an

experimental spectrum is deemed to be reliable: at wavenumbers  below this limit, the

estimates are distorted due to the limited size of an ocean area (10 by 10 degree) under

consideration (GFG’96). The fact that both the integration limits and the spectrum F1
-  

theor

depend on an unknown parameter R complicate the numerical integration.

If the wave turbulence is weak (hence, v =. 4), the problem reduces to minimizing the

1 D function A(R). An example of A(R) is provided in Fig. 14. In general, for an arbitrary

degree of wave nonlinearity, v should be treated as an unknown parameter in the ciirect

cascade range. T’he simplest method of minimizing  (19) in this case is to estimate A(R,v)

on a grid of R and v values and then find a point at which A attains its minimum. All such

calculations have been conducted for 55 patches in the Atlantic.. Figure 15 illustrates the

results for v based on the direct cascade model (7).

In order to check which IG WI’ model fits the observed spectra best, we conducted

cn]culations separately - using the direct cascade model (7) for the high-wavenumber range

and the inverse cascade moclel  (8) for a much broader range of wavenumbers.  This

cxpcri]ncnt  showed that the direct cascade model  yiclcls  best results for tropical latitudes,

while the inverse cascade moc]el  best agrees with observations at latitudes greater than 20

Clcgree. Consequently, the va~ues  of R used in I~igs.  13 ancl 16 are based c!. two different

models: in the renal bands right outside the equatorial waveguidc, R has been determined

based on (7). At all other latitudes we used (8). Using (7) for mid-latitudes yields, on the

average, 25 percent greater values of K than those presented in I;igs. 13 ancl 15. LJsing

(8) for tropical regions lcacls  to an average Lltlclcrestil~latioI]  of R by about 25 percent. ‘1’he

limited success of the direct cascacle  mockl  is probably duc to the fact that most of the
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high-wavenumber range of observed spectra is dominated by noise. lhc appropriate

model for this situation is illustrated in Fiig. 6.

Unfortunately, not all of the spectra in Fig. 12 permit positive determination of R: the

IG energy level in some regions is near the measuring noise level (F(k) K 103 cm3/cpkm)

and some spectra are apparently dominated by factors other than IG WT - their shape does

not fit any simple description suggested either by IG WT or by 21) quasi-geostrophic

turbulence theory. Such cases are discarded from further analysis and the corresponding

patches in Figs. 15 and 16 are left blank. The equatorial region is excluded because the

theory presented in Sect. 2 does not apply to (essential y 1 D) cquatoriall  y-trapped waves.

Discussion of the results for the Atlantic is given in the next Section.

7. Application to the Atlantic Occan

Atlantic ocean offers the full range of external conditions to bc found in other regions of

the Worlcl Ocean. We extracted from the ‘l’/J’ Geophysical Data Records (GIIR)

observations for cycles 15 through 68 covering 540 days of the l’fl>  mission. I’he

preparation of T& data and details of its statistical analysis are described in GI’G’96. l’he

calculations have been carried out for 55 patches, each 10 by 10 degree in size, in the

Atlantic ocean. The mean latitudes of the 10 by 10 degree patches in North Atlantic were set

at 15, 25, 35, 45 and 55 degree N.

20, 30, 40 and 50 degree S.

7.1 I’ield of baroclinic [G W1’

For the South Atlantic we chose central latitudes at 10,

‘J”hc amplitude of fast SS11 variations, WOl/2, based on Wfa~[(r) is show:.  in I;ig. 11.

The ID spectra, Ffast(k), of fast motions for the North and South Atlantic are illustrated in

l;ig. 12 separately. Since in most cases the observed spectra agree with (7) and (8), we

interpret W01’2 as the characteristic amplitude of baroclinic JG waves, and denote it by 01~.

“l’he highest energy of JG WT is observed in the Gulf Stream region where lG waves are

likely to bc generated by the baroclinic  instability of the vertical, quasi-geostrophic  motions
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with respect to gravity mode perturbations. This supposition finds further confirmation in

the South Atlantic where a relatively high level of IG WI’ is observed around the 30°’

4 latitude westward of 20°W.  This area is characterized by a w-y  large meridional shear of. .

the mean currents due to the passage of the Antarctic Circumpolar  Current (ACC) and the

convergence of the Bra~,il and Falkland currents in the western end. The highest amplitude

of IG waves is observed at the southern tip of Africa where the powerful Aghulas  current

generates north-west-propagating eddies and, as we anticipate, radiates IG waves. Since

the baroclinic  Rossby radius (Fig. 16) derived for these regions takes on reasonable values

(as compared to in situ measurements), we believe that the observed spectra of the fast

motions are dominated by IG WT rather than by the fast moving eddies. The relevance of

ICi WT in such regions is further confirmed by the increased values of v (see Fig. 15)

which correlate with the increased amplitude of fast motions. ~’he lowest amplitude of IG

waves is observed in the tropical region of the. South Atlantic. The characteristic values of

OIG in the regions away from strong currents vary between 4 and 6 cm, corresponding to

about 50 m for the amplitude of the thermocline  depth oscillations.

I;igure 16 provides a crude map of the 1st baroclinic  Rossby radius inferred as explained

in Sect. 6. Averaging this radius within zonal bands yields the latitudinal dependence of R,

Fig. 13. We find that, while our inferred R exhibits the correct trend (decreasing poleward

as - I/sin(O)), its values tend to be larger than the in siru results (triangles in Fig. 13) of

F,mer-y  et al. (1984) and Houry et al. (1987). This discrepancy may be caused by over-

simplifications of the present theory of IG WJ’ - as discussed in (Glannan, 1996) and/or

by various shortcomings of our data analysis technique. . .

Furthermore, the present poor understandiIlg  of the driving mechanism of ICI W1’ does

not allow us to specify the boundaries of the direct and inverse cascaclc  ranges. As a result,

in place,  of a composite spectrum contai  nin.g  both branches [introduced in (Glay,man,

1996)], wc had to c;nploy  in Sect.6 “partial” spectral moclels  appropriate only within

Iimitcd  wavenumber subrangcs.
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7.2 Quasigeoslrophic  motion

As suggested in Sect. 7.1, baroc]inic  IG WI’ may receive, at least part of, its energy

4 from the vertical component of oceanic motions, This suggestion finds an indirect.-

contlrmation  in the our work,

In Fig. 17 we present the characteristic amplitude, W0112,  of the slow motions

dominated by baroclinic Rossby waves, In the vicinity of the Gulf Stream, ACC, and

Aghulas  Current systems, the amplitude of the slow motions is, of course, at its highest;

while in the subtropics and other regions away from strong currents, the amplitude is

vanishingly  small. These spatial variations of WO tcmd to correlate with variations of the IG

WT amplitude in Fig. 11, and with the degree of the IG wave nonlinearity quantified by v

in I;ig. 15. This leads to a conjecture that at least one of the sources of baroclinic  IG wave

energy is the 2D quasi-geostrophic  turbu]encc  attaining its highest levels in the regions of

large lateral shear of the ocean current velocity. l’he closest analog for this mechanism is

the well known generation of acoustic pressure waves by the 311 turbulence. The

divergence of the horizontal velocity field causing thermocline depth oscillations in the case

of ]~J waves is similar to the divergence (at sufficiently high frequencies) of the 3D velocity

field causing sound waves.

The fact that the IG W1 amplitude remains finite in many regions where the aI@{tLlde

of the slow motions is vanishingly  small (e.g., in the Tonal band centered at 200S) points to

the presence of other possible sources of IC; WI’ energy - not related to the 21) vollical

motion. The scattering of barotropic  tides on ocean floor features has long been viewed as

a natural mechanism of baroclinic  wave generation. Many spectra in Fig. 12 xmtain  a little

bump (or other kind of irregularity) qt w.,~venurnbers corresponding to the barotropc tide

frequency - as predicted by ec~.(2) and illustrated by boxes at the curves of Figs. 1-6. l“his

feature of wave spectra maybe associated with the tidal forcing. While we cannot

presently assess the contribLltion  of the ticla] Incchanism to baroclinic  lCi wave energy, we

rcmincl  the reader that the estimates of the Kolmogorov  constant, o+, ancl spectral flux Q
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presented in Sect. 2.2 are consistent with our suggestion that a portion of Q may be
)

contributed by barotropic  tide.

.)

.-

8. Summary and Conclusions

Our analysis of the SSH field in the Atlantic has demonstrated that the fast component

of SS11 variations (with the characteristic timescale  under 1 day) makes a substantial

contribution to the total SSH variability. Its amplitude on the average is about 5 cm, and in

some regions it exceeds 15 cm. These fast SSH oscillations are characterized by

wavenumbcr spectra whose shape and dependence on external factors (the first baroclinic

Rossby  radius of deformation) are in good agreement with theoretical predictions for

baroclinic  IG WT. We thus conclude that the fast component of the observed SS11 signal

represents surface manifestation of long nonlinear internal waves of the first baroclinic

mode. The degree of these waves’ nonlinearity is low for most of the Atlantic. IIowever,

in regions of an intense generation of baroclinic ICJ WI’ - where their amplitude is well

ab~.ve the average - the wave nonlinearity tends to be high, attaining the regime of saturated

spectrum I: I(k) - k-s in some of the regions.

The high-wavenutnbcr  range of altimeter-measured SSH spectra - atk20.008 cpkm -

is dominated by intervening factors, such as altimeter measuring errors. The effect of such

factors is well represented by a simple model of shot noise, Fl (k) = Ilk-1. The noise

obscures manifestations of the direct energy cascade in the high-wavenumber  range of the

spectra, thus reclucing  usefulness of our equation (7) for describing the observations. At

wavcnumbers  below k = 0.007 cpkm, the observed spectra are best reprcsen::d  by the

tbcoretical  moclel for the inverse cascade range.

The large-scale quasi-geostrophic  motions are dominated by baroclinic  Rossby

waves. In regions of strongly sheared mean curren~s  (Gulf Stream, Aghu]as  current,

ACC), this component of the SS11 field attains its highest amplitude. The obscrvecl

correlation between the high amp]itucle  of slow nlotions ancl the high amplitude  of IG WI’
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points to the important role played by the vertical oceanic motions in the generation of

baroclinic  IGwaves.  Analogy with thegener:itior]  ofacoustic waves  bythec1assical3Il

turbulence is rather transparent.

Barotropic  tides scattered by ocean floor topography are pointed out as an additional

source of baroclinic  wave energy. III regions away from major ocean current systems, this

mechanism may become dominant. The fact that the inertial cascade of wave energy in

baroclinic  IG waves implies eventual dissipation of energy in the small-scale range of the

spectrum points to baroclinic  IG Wr as a factor of global dissipation of ocean tides.

Baroclinic Rossby waves are characterized by a wide range of scales and propagation

directions. While the zonal  component of the wave velocity vector is predominantly

westward (except for the ACC region where the waves are acivected  eastward by the mean

ocean current), the meridional component varies strongly and usually is greater than the

z,onal component. ln other words, the mean direction of Rossby  wave propagation is far

from z.ona]. Therefore, the conventional view of Rossby  waves as being generated at

eastern boundaries of ocean basins and then propagating across the basin to reach the

western bouncku-y  is in strong disagreement with our results.
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CAPTIONS FOR FIGURF:S .>,

Figure 1. 1 D spectrum, Fl(k)=&kF(k),  of SSH spatial variations due to weak

baroclinic IG wave turbulence dominated by the direct energy cascade. Here, E = 10–6,

and F(k) is based on (6) with cx = 10, HI==500 m, and c = 2.5 ntis. Solid curve: 0=20

deg, R=45 km. Dotted curve: 0=35  deg, R=:27 km. Dashed curve: 0=50 deg, R=20

km. Dash-dot curves provide power laws for reference. Boxes at the curves designate

wavenumber k~~.

Fjg~]re 2. I D spectnlm, Fl(k),  Of SSII spatial  variations due to strong baroclinic IG

wave turbulence (v= 10) dominated by the direct energy cascade. F(k) is based on (7) with
-1’9 = O 02 Other notations are as in Fig.1,cX1oQ . .

Figure 3. 111 spectrum, F](k), of SS}1 spatial variations due to baroclinic  IG wave

turbulence dominated by the inverse cascade of wave action: F(k) is based on (7) with

same parameters as used for Fig. 1. Other notations are also as in Fig. 1

Figure 4+ Nol~-dimensional  II) spcctrunl  ~1 (k) Of S.SI] spatial variations due to weak

baroclinic  IG wave turbulence clominated  by the direct energy cascade. Basecl  on (6) and

(8) with the same parameters and notations as in I;ig. 1.

~;igtlre  5, Non-dimensional 1]) spcctr~]nl ~1 (k) Of SSI] spatial variations”~ue  to weak

baroclinic  IG wave turbulence clominatecl  by the inverse cascade of wave action. Ilasecl on

(7) and (8), with the same parameters ancl notations as in I’ig, 1.
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~~jgure (5. I D spectrum, F1 (k), of SS11 spatial variations due to weak baroc]inic  IG

wave turbukmcc dominated by the inverse cascade of wave action, in the presence of error

noise. Hased on (7) and (9), with the same parameters and notations as in Fig. 1.

Figure 7. Three sections of the autocorrclation  function W(r,I)  for a 10 by 10 deg area

of the South Atlantic centered at 30°S, 5°13.

Top panel: W(rX,O,z).  Middle panel: W(O,rY,~).  Bottom panel: W(rX, ry,@.

Figure 8. The saJne as Fig. 7 but for a 10 by 10 deg area of the South Atlantic centered

at 30%, 250W .

I;igurc 9. EMimation  of IG wave spectra for a 10 by 10 degree  patch centcrecl at 30°S

and 5°13 (in correspondence with Fig.7):

Pzinel  A: 111 autocorrelation  functions: Solicl  curve: W(r) given by eq.( 12) for along-

track SS}1 variations, Dotted curve: W~lO~V(r)  obtainecl  from W~lOW(r) by angular

integration (13). Dashed curve: Wt-ast(r) = W(r) - WSloW(r). Black circle: CJ21~ found as

WO in (15) for Wfast(r).

Panel B: ID spectra corresponding to 11) autocorrelation  functions in Panel A.

Figure 10. ‘l’he same as Fig.9, but for the surface patch centered at 30°S ancl 25°W (in

correspondence with l:i,g.8).

l(igure 11. Square root, G1~, of the SS11 variance component due to fast motions,

estimated as W01’2 in (15) based on Wfa~t(r). “l’his quantity is interpreted as the

characteristic surface amplitude of baroclinic  IG waves.
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Fjgure 12. ID spectra of baroclinic  IG W1 obtained based on T/P altimeter data as

explained in Sect. 4.2. Panel A: North Atlantic. Panel B: South Atlantic. The units,

scale and range of the vertical and horizontal  axes am the same as in Panel B of Figs. 9 and

10. The lon ancl lat coordinates of a patch are provided on top of each plot.

Figure 13. First internal Rossby  radius of deformation averaged within zonal bands and

referenced to geographic latitude. Triangles: based on analysis of the observed density

stratification by Iirnery et al, (1984) and lloury et al. (1987). Solid curve: based on eqs. (3)

and (4) with h = 0.5 m. Dashed curve: based on eqs. (2) anti (3) with h = 1.0 m. Solid

dots: inferred from T/P altimeter measurements as explained in Sect. 6.

Figure  14. Function A(R) defined by liq. (19) for ~’~~”or dominated by the inverse

cascade of wave action (8). Ilcrc wc usc the experimental spectrllm i’~Per  for a s~lrfacc

patch centered at 150W, 20°S.

Figure 15. The effective number, v, of resonantly interacting wave harmonics clerived

from the spectra of Fig. 10 as explained in Sect. 6.

Figure 16. l’he baroclinic  Rossby  radius of deformation derived from the spectra of I:ig.

12 as explained in Sect. 6.

Figure 17. ‘l’he characteristic amplitude of cluasi-geostrophic  motions,  W’Ui/2, derivccl

based on Wfa~[(r) as cxplainccl in Sect. 4.
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